γ-PGA Hydrolases of Phage Origin in Bacillus subtilis and Other Microbial Genomes

نویسندگان

  • Stefania Mamberti
  • Paola Prati
  • Paolo Cremaschi
  • Claudio Seppi
  • Carlo F. Morelli
  • Alessandro Galizzi
  • Massimo Fabbi
  • Cinzia Calvio
  • Raymond Schuch
چکیده

Poly-γ-glutamate (γ-PGA) is an industrially interesting polymer secreted mainly by members of the class Bacilli which forms a shield able to protect bacteria from phagocytosis and phages. Few enzymes are known to degrade γ-PGA; among them is a phage-encoded γ-PGA hydrolase, PghP. The supposed role of PghP in phages is to ensure access to the surface of bacterial cells by dismantling the γ-PGA barrier. We identified four unannotated B. subtilis genes through similarity of their encoded products to PghP; in fact these genes reside in prophage elements of B. subtilis genome. The recombinant products of two of them demonstrate efficient polymer degradation, confirming that sequence similarity reflects functional homology. Genes encoding similar γ-PGA hydrolases were identified in phages specific for the order Bacillales and in numerous microbial genomes, not only belonging to that order. The distribution of the γ-PGA biosynthesis operon was also investigated with a bioinformatics approach; it was found that the list of organisms endowed with γ-PGA biosynthetic functions is larger than expected and includes several pathogenic species. Moreover in non-Bacillales bacteria the predicted γ-PGA hydrolase genes are preferentially found in species that do not have the genetic asset for polymer production. Our findings suggest that γ-PGA hydrolase genes might have spread across microbial genomes via horizontal exchanges rather than via phage infection. We hypothesize that, in natural habitats rich in γ-PGA supplied by producer organisms, the availability of hydrolases that release glutamate oligomers from γ-PGA might be a beneficial trait under positive selection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poly-γ-Glutamic Acids Contribute to Biofilm Formation and Plant Root Colonization in Selected Environmental Isolates of Bacillus subtilis

Bacillus subtilis is long known to produce poly-γ-glutamic acids (γ-PGA) as one of the major secreted polymeric substances. In B. subtilis, the regulation of γ-PGA production and its physiological role are still unclear. B. subtilis is also capable of forming structurally complex multicellular communities, or biofilms, in which an extracellular matrix consisting of secreted proteins and polysac...

متن کامل

Improvement of Bacillus subtilis for poly‐γ‐glutamic acid production by genome shuffling

Poly-γ-glutamic acid (γ-PGA) is a promising microbial polymer with potential applications in industry, agriculture and medicine. The use of high γ-PGA-producing strains is an effective approach to improve productivity of γ-PGA. In this study, we developed a mutant, F3-178, from Bacillus subtilis GXA-28 using genome shuffling. The morphological characteristics of F3-178 and GXA-28 were not ident...

متن کامل

B. subtilis Strains Isolated from Fermented Asian Soybeans

We compared the production of poly-γ-glutamate (γ-PGA), protease and amylase, the phage type, and inheritance of the insertion sequence (IS) IS4Bsu1among 90 Bacillus subtilis strains isolated from fermented soybean foods from Southeast to East Asia with those of a B. subtilis (natto) starter strain. All the isolates produced high levels of protease but various levels of amylase. None of them be...

متن کامل

Draft Genome Sequence of the Biofilm-Producing Bacillus subtilis Strain B-1, Isolated from an Oil Field

We report here the draft genome sequence of the Bacillus subtilis strain B-1, a strain known to form biofilms. The biofilm matrix mainly consists of the biopolymer γ-polyglutamate (γ-PGA). The sequence of the genome of this strain allows the study of specific genes involved in biofilm formation.

متن کامل

Cloning and Expression of the γ-Polyglutamic Acid Synthetase Gene pgsBCA in Bacillus subtilis WB600

To clone and express the γ-polyglutamic acid (γ-PGA) synthetase gene pgsBCA in Bacillus subtilis, a pWB980 plasmid was used to construct and transfect the recombinant expression vector pWB980-pgsBCA into Bacillus subtilis WB600. PgsBCA was expressed under the action of a P43 promoter in the pWB980 plasmid. Our results showed that the recombinant bacteria had the capacity to synthesize γ-PGA. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015